Non-Invasive Techniques
Key: Does not hurt the organism

Psychology 372
Physiological Psychology
Steven E. Meier, Ph.D.

Listen to the audio lecture while viewing these slides or view the video presentation available through Blackboard

Many Procedures

- X-Ray
- CT (CAT)
- MRI
- FMRI
- PET
- SPECT
- SQUID
- EEG

X-RAY

- Typical X-Ray you receive at the physician’s office.
- Can be used to examine brain structures
- Dyes can be injected and brain structures examined
- Air can be inserted into the spinal column and brain structures examined

Advantages

- Is relatively cheap.
- Good to look at basic structures
- Good for bones and other things

Disadvantages

- When injecting air, causes a major headache
- Cannot look at function
- Cannot see detail as well as other procedures
- Cannot be used to examine function.

Cerebral Angiography

- Uses radio-opaque dyes
- Inject dye into the vertebral or carotid artery.
- X-ray the brain
- Dyes blocks x-rays and allows you to see brain arteries extremely well.
- Allows you to see vascular deformities
 - Balloon shape – aneurysm
 - Deformity from where the artery should be – Tumor
Computerized Axial Tomography (CT or CAT)

- Generally is a fancy X-Ray but uses a computer to create the image.
- X-Ray unit moves around the structure (e.g., head) and puts X-Rays through to a detector on the opposite side.
- Basically gives you a picture of a slice of tissue.
- Gives a good picture of the tissue at that level.

Positron Emission Tomography (PET)

- Similar to a CT Scan.
- Can be used to look at brain structures.
- Not used for as much today.
- Primarily is used to examine brain functioning.

Procedure

- Make Glucose “Hot”.
- Put radioactive glucose into the patient.
- The patient is now emitting particles in all cells but particles concentrate in:
 - tumor sites
 - places that are using lots of glucose
- Have a scanner pick up the particles.
- Computer makes a picture of where the glucose is concentrated.

Result

- Can see where a tumor is located.
- Can determine which part of the brain is operating when doing a particular task.
 - Movement
 - Thinking
 - Visual Processing
Psychological/Psychiatric Disorders

- People with Schizophrenia show more activity in the Frontal and Occipital lobes than normals
- People with depression show decreased glucose usage than normals
- Can be used with a variety of disorders.

Advantages

- Great for looking at brain functioning
- Is helping us to understand how the brain is working.
- Is relatively safe

Disadvantages

- Cyclotron is expensive
- Thus, PET is expensive
- It is an invasive technique
 - anytime you add something in a organism, you risk a reaction
 - Can get the label “to hot”

Magnetic Resonance Imagery

- Similar to a CT scan but uses magnetic fields instead of X-Rays
- Causes the nuclei of some atoms to spin in specific orientations
 - anytime you add something in an organism, you risk a reaction
- When you add specific radio frequencies, the nuclei from water molecules (Hydrogen) emit particular frequencies as well
- Have a detector for the Hydrogen frequencies

Uses

- Very good at detecting certain diseases
 - MS
- Have little water in White Matter
- Lots of resonance in Gray Matter
 - Myelin has little water
 - With demyelination, glial cells move in and have lots of water
Uses

- Good for finding tumors
- Good for strokes
- Good for finding focal point seizures
- Can be used on any body structure as well

Advantages

- Can be used on any structure
- Provides better detail than CT
- Does not use X-Rays - Lower radiation
- Great for focal points

Disadvantage

- Is expensive
- Hear lots of loud noise like banging
- Can be scary

Functional MRI (FMRI)

- Similar to MRI but look at function
- Looks at Oxygen metabolism instead of Hydrogen
- Have higher resolution than PET scans
 - Get better detail about particular brain regions.

Single-Photon Emission Computerized Tomography (SPECT)

- Is like a PET Scan but more refined

Superconducting QUantum Interference Device (SQUID)

- Like MRI – Are used to pick up changes in magnetic fields
 - When neurons fire
 - creates a change in electrical current
 - causes a magnetic field
 - So, changes in magnetic field indicate changes in neural activity.
 - Can monitor changes of one milliseconds while other techniques take seconds.
 - Is extremely sensitive
Williamson and Kaufman

- Used SQUID to monitor the brain of a person listening to a piano
- Found
 - the brain hears loud sounds in a different place from quieter sounds
 - Brain distance between areas that hear a low C on a piano is the same distance that hears middle C from a high C

Faces

- Place where the brain remembers faces is different from where it remembers objects
 - Faces - Right hemisphere that specializes in spatial configurations
 - Objects - (Spatial) - Is recalled in the cortex that originally processed how the spatula felt and how the hands moved it.
- When objects to be recalled close to where you want to use the information.

Magnetic Source Imaging (MSI)

- Uses SQUID to measure ions in the brain or other areas (e.g., heart).
- Magnetoencephalography (MEG)
 - Measures magnetic fields of the brain
- Magnetocardiography (MCG)
 - Measures magnetic fields of the heart.

Some Websites for More Information

SQUID
- http://www.siue.edu/~tpartha/images/magnetometry.htm

Medical Techniques